|
Контрольная работа №1 Простейшие задачи в координатах Вариант 1 Найдите координаты вектора, если а (5; -1; 3), в (2; -2; 4) Контрольные работы по геометрии в 11 классе по учебнику атанасян л.с.
Контрольная работа № 1 Простейшие задачи в координатах
Вариант 1
1. Найдите координаты вектора , если А (5; –1; 3), В (2; –2; 4).
2. Даны векторы (3; 1; –2) и (1; 4; –3). Найдите .
3. Изобразите систему координат Oxyz и постройте точку А (1; –2; –4). Найдите расстояния от этой точки до координатных плоскостей.
Вариант 2
1. Найдите координаты вектора , если С (6; 3; – 2), D (2; 4; – 5).
2. Даны вектора (5; – 1; 2) и (3; 2; – 4). Найдите .
3. Изобразите систему координат Oxyz и постройте точку В (– 2; – 3; 4). Найдите расстояние от этой точки до координатных плоскостей.
Контрольная работа № 2 Угол между векторами. Скалярное произведение векторов
Вариант 1
1. Вычислите скалярное произведение векторов и , если , , = 2, = 3, = 60°, , .
2. Дан куб ABCDA1B1C1D1. Найдите угол между прямыми AD1 и BM, где M – середина ребра DD1.
3. . При движении прямая a отображается на прямую a1, плоскость α – на плоскость α1, и . Докажите, что .
Вариант 2
1. Вычислите скалярное произведение векторов и , если , , = 3, = 2, = 60°, , .
2. Дан куб ABCDA1B1C1D1. Найдите угол между прямыми AC и DC1.
3. При движении прямая отображается на прямую b1, а плоскость β – на плоскость β1 и b || β1
Контрольная работа № 3 Цилиндр. Конус. Шар
Вариант 1
1. Осевое сечение цилиндра – квадрат, площадь основания цилиндра равна 16π см2. Найдите площадь поверхности цилиндра.
2. Высота конуса равна 6 см, угол при вершине осевого сечения равен 120°. Найдите:
а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 30°;
б) площадь боковой поверхности конуса.
3. Диаметр шара равен 2m. Через конец диаметра проведена плоскость под углом 45° к нему. Найдите длину линии пересечения сферы с этой плоскостью.
Вариант 2
1. Осевое сечение цилиндра – квадрат, диагональ которого 4 см. Найдите площадь поверхности цилиндра.
2. Радиус основания конуса равен 6 см, а образующая наклонена к плоскости основания под углом 30°. Найдите:
а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 60°;
б) площадь боковой поверхности конуса.
3. Диаметр шара равен 4m. Через конец диаметра проведена плоскость под углом 30° к нему. Найдите площадь сечения шара этой плоскостью.
Контрольная работа № 4 Объемы тел
Вариант 1
1. Апофема правильной треугольной пирамиды равна 4 см, а двугранный угол при основании равен 60°. Найдите объем пирамиды.
2. В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2a, а прилежащий угол равен 30°. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45°. Найдите объем цилиндра.
Вариант 2
1. Боковое ребро правильной треугольной пирамиды равно 6 см и составляет с плоскостью основания угол в 60°. Найдите объем пирамиды.
2. В конус вписана пирамида. Основанием пирамиды служит прямоугольный треугольник, катет которого равен 2a, а прилежащий угол равен 30°. Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол в 45°. Найдите объем конуса.
Контрольная работа № 5 Объем шара и его частей
Вариант 1
1. Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол в 60°. Найдите отношение объемов конуса и шара.
2. Объем цилиндра равен 96π см3, площадь его осевого сечения 48 см2. Найдите площадь сферы, описанной около цилиндра.
Вариант 2
1. В конус, осевое сечение которого есть правильный треугольник, вписан шар. Найдите отношение площади сферы к площади боковой поверхности конуса.
2. Диаметр шара равен высоте цилиндра, осевое сечение которого есть квадрат. Найдите отношение объемов цилиндра и шара. |
|
|