|
тема 3).
Смешали 4 л 15%-ного раствора соли с 5 л 20%-ного соли к смеси добавили 1 л чистой воды. Какова концентрация полученной смеси?
В сосуд, содержащий 5 литров 12–процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?
К 15 литрам 10%-ого раствора соли добавили 5%-ный раствор соли и получили 8%-ный раствор. Какое количество литров 5%-ного раствора добавили?
В каких пропорциях нужно смешать раствор 50%-й и 70%-й кислоты, чтобы получить раствор 65%-й кислоты?
Приложение 17.
Задачи на повышение концентрации (тема 3).
Сначала приготовили 25% раствор поваренной соли. Затем одну треть воды испарили. Найти концентрацию получившегося раствора.
К 40%-ному раствору соляной кислоты добавили 50 г чистой кислоты, после чего концентрация раствора стала равной 60%. Найдите первоначальную массу раствора.
Сколько килограммов олова нужно добавить к куску бронзы массой 4 кг и содержащему 15% олова, чтобы повысить содержание в нем олова до 25% от общей массы?
Сколько килограммов меди нужно добавить к куску бронзы массой 8 кг и содержащему 13% меди, чтобы повысить содержание в нем меди до 25% от общей массы?
Приложение 18.
Задачи на «сухое вещество» (тема 4).
Свежие грибы содержат 90% воды, а сухие — 15% воды. Сколько получится сухих грибов из 34 кг свежих грибов?
Сухие грибы содержат 12% воды, а свежие - 90% воды. Сколько получится сухих грибов из 22 кг свежих грибов?
Первоначально влажность зерна составляла 25%. После того как 200 кг зерна просушили, оно потеряло в массе 30 кг. Вычислить влажность просушенного зерна.
Виноград содержит 90% влаги, а изюм — 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?
Виноград содержит 91% влаги, а изюм — 7%. Сколько килограммов винограда требуется для получения 21 килограмма изюма?
Виноград содержит 88% влаги, а изюм — 13%. Сколько килограммов винограда требуется для получения 36 килограммов изюма?
Из 10 кг свежих фруктов получается 3,5 кг сушеных фруктов, содержащих 20% влаги. Чему равно процентное содержание влаги в свежих фруктах?
Приложение 19.
Задачи на переливание (тема 5). 1. В первой кастрюле был 1 л кофе. А во второй — 1 л молока. Из второй кастрюли в первую перелили 0,13 л молока и хорошо размешали. После этого из первой кастрюли во вторую перелили 0.13 л смеси. Чего больше: молока в кофе или кофе в молоке?
2. В сосуде объемом 10 л содержится 20% -й раствор соли. Из сосуда вылили 2 л раствора и долили 2 л воды. После чего раствор перемешали. Эту процедуру повторили ещё один раз. Определите концентрацию соли после первой и после второй процедуры.
3. Из сосуда емкостью 54 л, наполненного кислотой, вылили несколько литров кислоты и долили столько же литров воды, потом вылили столько же литров смеси. Тогда в смеси, оставшейся в сосуде, оказалось 24 л кислоты. Сколько литров кислоты вылили в первый раз?
4. Из сосуда ёмкостью 54 литра, наполненного кислотой, вылили несколько литров и доли сосуд водой. Потом опять вылили столько же литров смеси. Тогда в оставшейся в сосуде смеси оказалось 24 литра чистой кислоты. Сколько кислоты вылили в первый раз?
В сосуде находится 10%-ный раствор спирта. Из сосуда отлили 1/3 содержимого, а оставшуюся часть долили водой так, что сосуд оказался заполненным на 5/6 первоначального объема. Какое процентное содержание спирта оказалось в сосуде?
Приложение 20.
Задачи по теме на смешивание растворов и сплавов разных концентраций (тема 6,7).
К 15 литрам 10%-ого раствора соли добавили 5%-ный раствор соли и получили 8%-ный раствор. Какое количество литров 5%-ного раствора добавили?
В лаборатории есть раствор соли 4-х различных концентраций. Если смешать I, II, III растворы в весовом отношении 3:2:1, то получится 15%-ный раствор. II, III, IV растворы в равной пропорции дают при смешивании 24%-ный раствор, и , наконец, раствор составленный из равных частей I и III растворов, имеет концентрацию 10%. Какая концентрация будет при смешении II и IV растворов в пропорции 2:1?
Два раствора, первый из которых содержал 800 г, а второй 600 г безводной серной кислоты, смешали и получили 10 кг нового раствора серной кислоты. Определите массу первого и второго растворов, вошедших в смесь, если известно, что процент содержания безводной серной кислоты в первом растворе на 10% больше, чем во втором.
Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах
Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?
8. Имеется два сплава. Первый сплав содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
9. Имеются два сплава, состоящие из цинка меди и олова. Известно, что первый сплав содержит 40% олова, а второй – 26% меди. Процентное содержание цинка в первом и во втором сплавах одинаково. Сплавив 150 кг первого сплава и 250 кг второго, получили сплав, в котором оказалось 30% цинка. Определить сколько килограммов олова содержится в получившемся сплаве.
10. Даны два сплава. Первый весит 4кг и содержит 70% серебра. Второй весит 3кг и содержит 90% серебра. Сколько кг второго сплава надо сплавить со всем первым сплавом, чтобы получить r%-ный сплав серебра? При каких r задача имеет решение? |
|
|