|
СОДЕРЖАНИЕ ОБУЧЕНИЯ
алгебра
9 класс
1. Свойства функций. Квадратичная функция
Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, ее свойства и график. Степенная функция.
Основная цель — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции.
В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.
Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.
Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + b, у = а (х - т)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приемы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.
При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.
Учащиеся знакомятся со свойствами степенной функции у=хп при четном и нечетном натуральном показателе п. Вводится понятие корня п-й степени. Учащиеся должны понимать смысл записей вида , Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.
Уравнения и неравенства с одной переменной
Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.
Основная цель — систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с > 0 или ах2 + bх + с < 0, где а ≠0.
В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.
Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.
Формирование умений решать неравенства вида ах2 + bх + с > 0 или ах2 + bх + с < 0, где а ≠ 0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы, ее расположение относительно оси Ох).
Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.
Уравнения и неравенства с двумя переменными
Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.
Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.
В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.
Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.
Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.
Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.
Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.
Прогрессии
Арифметическая и геометрическая прогрессии. Формулы п-го члена и суммы первых п членов прогрессии. Бесконечно убывающая геометрическая прогрессия.
Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.
При изучении темы вводится понятие последовательности, разъясняется смысл термина «п-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.
Работа с формулами п-го члена и суммы первых п членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.
Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.
Элементы комбинаторики и теории вероятностей
Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.
Основная цель — ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.
Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, которое используется в дальнейшем при выводе формул для подсчета числа перестановок, размещений и сочетаний.
При изучении данного материала необходимо обратить внимание учащихся на различие понятий «размещение» и «сочетание» сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.
В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.
6. Повторение
9 класс
Номер параграфа
| Содержание материала
| Количество часов
| Глава I Квадратичная функция
| 22
| 1
| Функции и их свойства
| 5
| 2
| Квадратный трехчлен
| 4
|
| Контрольная работа № 1
| 1
| 3
| Квадратичная функция и ее график
| 8
| 4
| Степенная функция. Корень n-степени.
| 3
|
| Контрольная работа № 2
| 1
| Глава II Уравнения и неравенства с одной переменной
| 14
| 5
| Уравнения с одной переменной
| 8
| 6
| Неравенства с одной переменной
| 5
|
| Контрольная работа № 3
| 1
| Глава III Уравнения и неравенства с двумя переменными
| 17
| 7
| Уравнения с двумя переменными и их системы
| 12
| 8
| Неравенства с двумя переменными и их системы
| 4
|
| Контрольная работа № 4
| 1
| Глава IV Арифметическая и геометрическая прогрессии
| 15
| 9
| Арифметическая прогрессия
| 7
|
| Контрольная работа № 5
| 1
| 10
| Геометрическая прогрессия
| 6
|
| Контрольная работа № 6
| 1
| Глава V Элементы комбинаторики и теории вероятностей
| 13
| 11
| Элементы комбинаторики
| 9
| 12
| Начальные сведения из теории вероятностей
| 3
|
| Контрольная работа № 7
| 1
| Повторение
| 21
| 13
| Итоговая контрольная работа
| 2
|
СОДЕРЖАНИЕ ОБУЧЕНИЯ
геометрия
8 класс
1. Четырехугольники
Многоугольник, выпуклый многоугольник, 'четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.
Основная цель — изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.
Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить в начале изучения темы.
Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.
Площадь
Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Основная цель — расширить и углубить полученные в 5—6 классах представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.
Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для учащихся.
Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади.
Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.
Подобные треугольники
Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Основная цель — ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.
Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.
На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.
В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.
Окружность
Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.
Основная цель — расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.
В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.
Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.
Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.
Повторение. Решение задач
8 класс
Номер параграфа
| Содержание материала
| Количество часов
| Глава V Четырехугольники
| 14
| 1
| Многоугольники
| 2
| 2
| Параллелограмм и трапеция
| 6
| 3
| Прямоугольник, ромб, квадрат
| 4
|
| Решение задач
| 1
|
| Контрольная работа № 1
| 1
| Глава VI Площадь
| 14
| 1
| Площадь многоугольника
| 2
| 2
| Площадь параллелограмма, треугольника и трапеции
| 6
| 3
| Теорема Пифагора
| 3
|
| Решение задач
| 2
|
| Контрольная работа № 2
| 1
| Глава VII Подобные треугольники
| 19
| 1
| Определение подобных треугольников
| 2
| 2
| Признаки подобия треугольников
| 5
|
| Контрольная работа № 3
| 1
| 3
| Применения подобия к доказательству теорем и решению задач
| 7
| 4
| Соотношения между сторонами и углами прямоугольного треугольника
| 3
|
| Контрольная работа № 4
| 1
| Глава VIII Окружность
| 17
| 1
| Касательная к окружности
| 3
| 2
| Центральные и вписанные углы
| 4
| 3
| Четыре замечательные точки треугольника
| 3
| 4
| Вписанная и описанная окружности
| 4
|
| Решение задач
| 2
|
| Контрольная работа № 5
| 1
| Повторение. Решение задач
| 4
|
| Итоговая контрольная работа
| 2
| |
|
|