|
Виды соединений проводников. Если вас попросят собрать цепь из источника тока и двух лампочек, то вы, скорее всего, поступите, как изображено на схеме "а". Такое соединение проводников называют последовательным. Оно так названо потому, что электроны, двигаясь от клеммы "–" источника тока, пройдут через обе лампочки последовательно, то есть сначала через левую лампочку, а затем – через правую.
Но лампочки можно соединить и так, как изображено на схеме "б". Такое соединение проводников называется параллельным. Это название подчеркивает, что, двигаясь от источника тока, все электроны разделятся на две "группы", которые пройдут через лампочки параллельно, независимо друг от друга.
В электрических цепях часто встречается смешанное соединение электроприборов. Например, на схеме "в" показано параллельное соединение резистора и вольтметра. Эта группа приборов последовательно соединена с амперметром и клеммами для подключения источника тока.
|
|
|
|
| Начальные сведения о силе тока и сопротивлении
Соберем цепь из лампочки и источника тока. При замыкании цепи, лампочка, конечно же, загорится. Включим теперь в цепь отрезок стальной проволоки. Лампочка станет гореть тусклее. Заменим теперь стальную проволоку на никелиновую. Накал спирали лампочки еще уменьшится. Другими словами, мы наблюдали ослабление теплового действия тока или уменьшение мощности тока. Из опыта следует вывод: последовательное включение в цепь дополнительного проводника всегда приводит к уменьшению мощности тока.
|
Сила тока
Вспомним, что ток – это движение заряженных частиц: ионов или электронов. Именно они являются носителями (переносчиками) заряда. Следовательно, под силой тока удобнее понимать не количество заряженных частиц, протекающих через проводник за единицу времени, а количество "переносимого" ими заряда.
Итак, сила тока – физическая величина, показывающая заряд, проходящий через проводник за единицу времени. Математически это определение записывается в виде формулы:
| I –
| сила тока, А
| q –
| заряд, Кл
| t –
| время, с
| Для измерения силы тока используют специальный прибор – амперметр. Его включают в разрыв цепи в том месте, где нужно измерить силу тока. Внешний вид школьного демонстрационного амперметра вы видите слева.
Единица силы тока – 1 ампер (1 А = 1 Кл/с). Для установления этой единицы используют магнитное действие тока. Оказывается, что проводники, по которым текут параллельные одинаково направленные токи, притягиваются друг к другу. Это притяжение тем сильнее, чем больше длина этих проводников и меньше расстояние между ними. За 1 ампер принимают силу такого тока, который вызывает между двумя тонкими бесконечно длинными параллельными проводниками, расположенными в вакууме на расстоянии 1 м друг от друга, притяжение силой 0,0000002 Н на каждый метр их длины.
Измерим силу тока на различных участках цепи, состоящей из реостата и лампочки. Сначала амперметр включим между реостатом и лампочкой, а затем – между лампочкой и источником тока.
Измерения показывают, что на всех участках цепи с последовательным соединением проводников сила тока одинакова. Даже если ползунок реостата передвинуть, и изменить силу тока, она, тем не менее, на всех участках цепи опять-таки будет одинаковой:
Измерим теперь силу тока на различных участках цепи с параллельным соединением проводников, например, лампочек.
Измерения показывают, что сила тока в неразветвленной части цепи равна сумме сил токов на всех параллельно соединенных проводниках.
В этом опыте, например, могли получиться следующие показания амперметра: I1 = 0.2 А, I2 = 0.3 А, Iоб = 0.5 А.
|
| Физикой установлено, что во всех кристаллах электроны совершенно одинаковы, а ионы (их размеры, порядок и плотность расположения) – различны. Именно поэтому различные металлы имеют различное электрическое сопротивление.
Электрическое напряжение
Мы выяснили, что мощность тока тем больше, чем больше сила тока. Теперь взгляните на рисунки. Через обе лампочки проходит одинаковый ток: 0.4 А. Но большая лампа горит ярче, то есть работает с большей мощностью, чем маленькая. Получается, мощность может быть различной при одинаковой силе тока?
Кроме силы тока, мощность зависит еще от одной физической величины – электрического напряжения. В нашем случае напряжение, создаваемое выпрямителем, меньше напряжения, создаваемого городской электросетью. Поэтому при равенстве сил тока мощность тока в цепи с меньшим напряжением оказывается меньше.
Зависимость электрической мощности сразу от двух величин в физике представляют произведением:
| P –
| мощность тока, Вт
| I –
| сила тока, А
| U –
| электрическое напряжение, В
| По международному соглашению единицей электрического напряжения служит 1 вольт. Это такое напряжение, которое при силе тока 1 А создает ток мощностью 1 Вт.
Для измерения напряжения используют специальный прибор – вольтметр. Его всегда присоединяют параллельно к концам того участка цепи, на котором хотят измерить напряжение. Внешний вид школьного демонстрационного вольтметра показан на рисунке справа.
Измерим напряжение на различных участках цепи, состоящей из реостата и лампочки. Сначала измерим напряжение на реостате: … В. Затем измерим напряжение на лампочке: … В. И, наконец, напряжение на всем соединении … В.
Измерения показывают, что в цепи с последовательным соединением проводников напряжение на всем соединении равно сумме напряжений на отдельных проводниках:
Измерим теперь напряжение на различных участках цепи с параллельным соединением проводников, например, лампочек.
Измерения покажут, что в цепи с параллельным соединением проводников напряжение на каждом из проводников равно напряжению на всем соединении:
Закон Ома
Проделаем опыт. Нам потребуются источник тока, реостат, амперметр, вольтметр и два резистора (проволочных спирали) с различными сопротивлениями. Соберем цепь по схеме:
Передвигая ползунок реостата, поочередно установим силу тока 0.4, 0.6, 0.8 и 1 А. Запишем показания вольтметра, подключенного к резистору. Повторим опыт, заменив первый резистор вторым:
| 1-й резистор
| 2-й резистор
| I, А
| 0.4
| 0.6
| 0.8
| 1
| 0.4
| 0.6
| 0.8
| 1
| U, В
| 1.6
| 2.4
| 3.2
| 4
| 2.4
| 3.6
| 4.8
| 6
| Если поделить напряжение на силу тока в цепи (то есть вычислить значения дробей U/I ), то обнаружится, что для каждого резистора будут получаться приблизительно одинаковые числа: Для простоты рассуждений величину U/I мы обозначили буквой R. Из опыта следует вывод: для каждого металлического проводника отношение напряжения к силе тока в нем есть величина постоянная, не зависящая от напряжения и силы тока.
Заметьте, что для разных резисторов значения R получились разными: 4 Ом и 6 Ом. Этот факт показывает, что величина R является характеристикой не всй цепи, а каждого отдельного резистора.
Для выяснения физического смысла величины R соберем цепь по нижнему рисунку. Если сначала использовать первый резистор, у которого R = 4 Ом, а потом заменить его вторым, у которого R = 6 Ом, то лампочка станет гореть тусклее. Уменьшение яркости лампочки говорит об уменьшении силы тока. Это произошло потому, что сопротивление второго резистора больше.
Итак, величиной R можно характеризовать электрическое сопротивление проводника. Согласно международной договоренности электрическое сопротивление измеряют в омах. Так как
|
| то
|
| Отсюда следует, что 1 Ом – это сопротивление такого проводника, в котором возникнет ток 1 А, если на концы проводника подано напряжение 1 В. Связь между величинами R, U, I обычно записывается в виде следующей формулы, известной под названием закон Ома:
| I –
| сила тока на участке цепи, А
| U –
| приложенное напряжение, В
| R –
| сопротивление участка цепи, Ом
| Чтобы выяснить, как следует прочитать эту формулу, вспомним некоторые ваши знания по алгебре:
обратная пропорциональность:
Электронагревательные приборы
Электронагревательные приборы получили очень широкое распространение в нашей жизни. Например, электроплитки и чайники, утюги, кипятильники, камины, фены, щипцы для завивки волос уже давно стали привычными "жильцами" наших квартир. А вот полы и стены с электроподогревом или стиральные машины, автоматически кипятящие белье, пока еще редко встречаются в нашем быту.
Основной частью любого электронагревательного прибора является нагревательный элемент. Обычно он представляет собой нихромовую проволоку, свитую в виде спирали. В электрокаминах нагревательные спирали обычно помещают внутрь трубок из жаропрочного стекла, поэтому красивое красно-оранжевое свечение спиралей хорошо видно.
В старых электроутюгах в качестве нагревательного элемента служила нихромовая спираль, вставленная внутрь "гирлянды" фарфоровых изоляторов. Позднее стали использовать узкую нихромовую ленту, намотанную на пластинку из жаропрочного материала – слюды или керамики. В современных утюгах применяют проволочные спирали, заключенные внутрь металлических трубок. Их заполняют специальным электроизоляционным материалом, который препятствует соприкосновению витков спирали друг с другом и, главное, с металлическими стенками трубки.
Обычные лампы накаливания в световую энергию превращают менее 10 % потребляемой электроэнергии, а остальные 90 % превращают в теплоту. Поэтому такие лампы тоже можно считать электронагревательным приборами. И, хотя лампы накаливания чаще всего используют именно для освещения, нередки случаи, когда их применяют и для обогрева помещений, например, инкубаторов или теплиц.
Итак, нагревательные элементы электроприборов изготавливают из металлической проволоки или ленты. Но ведь и провода, подводящие ток к прибору, тоже изготовлены из металла. Не возникал ли у вас вопрос: почему же теплота выделяется именно в нагревательном элементе, а не в подводящих проводах?
Во-первых, теплота действительно выделяется не только в нагревательном элементе, но и в проводах. Однако, на единице длины нагревательного элемента ее выделяется гораздо больше, чем на единице длины провода. Другими словами, на каждом сантиметре спирали выделяется гораздо большее количество теплоты, чем на каждом сантиметре провода, подводящего к этой спирали ток.
Что такое свет
В обыденной речи слово "свет" мы используем в самых разных значениях: свет мой, солнышко, скажи..., ученье – свет, а неученье – тьма... В физике термин "свет" имеет гораздо более определенное значение. В узком смысле свет – это электромагнитные волны, вызывающие в глазу человека зрительные ощущения. Такой способностью обладают только волны с частотами 4·1014 – 8·1014 Гц. Однако, некоторые насекомые, например, пчелы способны видеть ультрафиолетовое излучение. А специальные приборы "ночного видения", часто используемые в военных целях, позволяют человеку видеть мир в инфракрасных лучах.
Эти три вида излучения обладают очень многими схожими свойствами. Поэтому видимое, ультрафиолетовое и инфракрасное излучения объединяют общим названием – оптические излучения, а раздел физики, занимающийся их изучением, называют оптикой. Таким образом, свет в широком смысле этого слова – это все оптические излучения.
По виду испускаемого излучения источники света разделяют на тепловые и люминесцентные. Тепловые источники светят потому, что сильно нагреты, например, пламя свечи или расплавленный металл на сталелитейном заводе.
Люминесцентный свет иначе называют "холодным светом". Источники этого света имеют невысокую температуру, например, лампа дневного света или экран телевизора. На фотографии изображена рука в резиновой перчатке, держащая колбу с самосветящейся (люминесцирующей) жидкостью.
По происхождению источники света разделяют на искусственные, то есть созданные человеком, и естественные, то есть созданные природой. Примеры искуственных источников вы видите на фотографиях, а примерами естественных источников света являются звезды, вулканы, некоторые насекомые (светлячки) и т.д.
Световые пучки
Обычно источники испускают свет одновременно во всех направлениях в пространстве, как, например, обычная лампа. Но если ее закрыть непрозрачным корпусом с отверстием, то свет будет распространяться в виде светового пучка, расширяющегося по мере удаления от источника. Например, на фотографии справа вы видите пучок желтоватого света от шахтерской лампы.
Как вы думаете, оказывают ли влияние друг на друга пересекающиеся пучки света? Чтобы ответить на этот вопрос, проделаем опыт. Возьмем два диапроектора, расположив их так, чтобы световые пучки пересекались. Вы видите, что синий луч правого проектора проходит сквозь красный луч левого. Однако это не приводит к искажениям изображений на экране.
Итак, закон независимости распространения света утверждает, что световые пучки, пересекаясь, не влияют друг на друга. Однако этот закон справедлив лишь для световых пучков небольшой интенсивности. Мощные пучки света, например, лазерные, будут оказывать влияние друг на друга. Другими словами, для пучков света большой энергии закон независимости распространения света перестает быть справедливым.
Пучки света, строго говоря, невидимы. Однако на обеих фотографиях на этой странице мы явственно их различаем. Почему? Дело в том, что воздух в комнате, а, тем более, в шахте, всегда содержит мелкие частицы влаги и пыли. Ярко освещенные пучком света, они сливаются в матовую пелену: желтоватую – если свет желтый, розовую – если свет красный и голубую – если пучок света синий. Но если же на пучок посмотреть вблизи, то можно разглядеть и отдельные пылинки, кружащие там в причудливом танце. Вспомните, этот танец пылинок вы наверняка видели, когда в щель между закрытыми шторами в комнату врывается солнечный луч.
Световые лучи
Изображая распространение света на чертежах, световые пучки обычно заменяют лучами. Световой луч – это линия, указывающая направление распространения энергии в пучке света. Луч является геометрической моделью физического понятия "пучок света".
Характерной особенностью светового луча, как и луча геометрического, является его прямолинейность. Однако, между ними есть и принципиальное различие: геометрический луч прямолинеен всегда, а луч света - только в прозрачной однородной среде.
Проделаем опыт. В стеклянный аквариум примерно до половины нальем воды, подкрашеной специальной зеленой краской (она называется "флуоресцин"). Затем, при помощи небольшого шланга, опущенного в нижнюю часть аквариума, вольем концентрированный раствор соли. Его плотность больше плотности подкрашенной воды, поэтому раствор заполнит нижнюю часть аквариума. Однако при вливании подкрашенная вода и раствор соли частично перемешаются друг с другом. Из-за этого, а также из-за диффузии жидкостей, в аквариуме образуется неоднородная среда. Ее плотность будет постепенно уменьшаться снизу вверх.
Направим теперь внутрь аквариума луч света от маленького лазера. Мы обнаружим, что пока луч распространяется в воздухе, то есть однородной среде, он прямолинеен. На границе раздела двух однородных сред (воздуха и стенки аквариума) луч преломляется. В неоднородной же среде (жидкость в аквариуме) луч распространяется криволинейно. Однако после выхода в однородную среду – воздух – луч света опять становится прямолинейным.
Итак, закон прямолинейного распространения света утверждает, что лучи света, распространяющегося в прозрачной однородной среде, являются прямыми линиями.
Отражение света
Проделаем опыт. На зеркало, лежащее на столе, поставим полуоткрытую книгу. Сверху направим пучок света так, чтобы он отражался от зеркала, но на книгу не попадал. В темноте мы увидим падающий и отраженный пучки света. Накроем теперь зеркало бумагой. В этом случае мы будем видеть падающий пучок, а отраженного пучка не будет. Выходит, что свет от бумаги не отражается?
Приглядимся к рисункам внимательнее. Заметьте, когда свет падает на зеркало, текст книги практически нельзя прочесть из-за слабого освещения. Но когда свет падает на лист бумаги, текст книги становится видимым гораздо отчетливее, особенно в нижней своей части. Следовательно, книга освещается сильнее. Но что же ее освещает?
При падении света на разные поверхности возможны два варианта. Первый. Пучок света, падающий на поверхность, отражается ею также в виде пучка. Такое отражение света называется зеркальным отражением. Второй. Пучок света, падающий на поверхность, отражается ею во всех направлениях. Такое отражение света называют рассеянным отражением или просто рассеянием света.
Зеркальное отражение возникает на очень гладких (полированных) поверхностях. Если же поверхность шероховата, то она обязательно будет рассеивать свет. Именно это мы и наблюдали, когда накрывали зеркало листом бумаги. Она отражала свет, рассеивая его по всевозможным направлениям, в том числе и на книгу, освещая ее.
Закон отражения света
Введем несколько определений. Углом падения луча назовем угол между падающим лучом и перпендикуляром к отражающей поверхности в точке излома луча (угол α ). Углом отражения луча назовем угол между отраженным лучом и перпендикуляром к отражающей поверхности в точке излома луча (угол β ).
При отражении света всегда выполняются две закономерности: Первая. Луч падающий, луч отраженный и перпендикуляр к отражающей поверхности в точке излома луча всегда лежат в одной плоскости. Вторая. Угол падения равен углу отражения. Эти два утверждения выражают суть закона отражения света.
На левом рисунке лучи, и перпендикуляр к зеркалу не лежат в одной плоскости. На правом рисунке угол отражения не равен углу падения. Поэтому такое отражение лучей нельзя получить на опыте.
Закон отражения является справедливым как для случая зеркального, так и для случая рассеянного отражения света. Обратимся еще раз к чертежам на предыдущей странице. Несмотря на кажущуюся беспорядочность в отражении лучей на правом чертеже, все они расположены так, что углы отражения равны углам падения. Взгляните, шероховатую поверхность правого чертежа мы "разрезали" на отдельные элементы и провели перпендикуляры в точках излома лучей.
Плоское зеркало
С плоским зеркалом мы сталкиваемся очень часто - когда причесываемся или бреемся, когда управляем автомобилем. Чистое оконное стекло или поверхность пруда тоже вполне могут служить плоскими зеркалами. Рассмотрим изображения, получающиеся при этом.
Пусть пучок света от источника S падает на зеркало. Рассмотрим лучи SA и SB. После отражения от зеркала они кажутся нам исходящими из точки S'. То есть источник S нам кажется расположенным за зеркалом! Заметим также, что расстояния SO и S'O равны, а отрезок SS' перпендикулярен зеркалу.
Итак, теоретическим путем мы выяснили, что изображения предметов в зеркале являются мнимыми (так как кажутся расположенными там, куда световые лучи на самом деле не проникают). Изображения находятся позади зеркала на таком же расстоянии от него, как и сами предметы. Кроме того, отрезок, соединяющий предмет и его изображение, перпендикулярен поверхности зеркала.
Проверим теперь эти выводы экспериментально. Положим на стол линейку, а поверх нее вертикально поставим стекло. Оно будет служить полупрозрачным зеркалом. Поместив перед ним свечу, мы увидим ее отражение. Оно будет казаться расположенным позади стекла. Однако, заглянув туда, мы никакого изображения не увидим. Следовательно, мы убедились, что изображение является мнимым.
Чтобы убедиться в правильности второго вывода, измерим по линейке расстояния от стекла до свечи и от стекла до изображения. Они окажутся равны. Подтвердить третий вывод тоже несложно: угольник с прямым углом нужно приложить к линейке.
Преломление света
Взглянем еще раз на рисунок аквариума в § 17-в. Луч, выходящий из лазера, сначала был прямолинейным. Но, дойдя до стеклянной стенки аквариума, изменил свое направление, то есть испытал преломление. Преломлением света называют явление изменения направления светового луча на границе раздела двух сред.
Рассмотрим три ситуации соприкосновения таких сред: воздуха и воды, воздуха и стекла, воды и стекла. Взгляните на чертежи справа.
Как видите, разные вещества, прозрачные для оптических излучений, обладают неодинаковой преломляющей способностью. Стекло, например, преломляет лучи сильнее, чем вода. Преломляющую способность разных сред можно сравнивать и по таблице:
Показатели преломления некоторых сред:
|
|
|
|
|
|
|
|
|
|
|
| Вакуум
|
| 1
|
|
|
| Вода
|
| 1.33
|
|
|
|
|
| Воздух
|
| 1.0003
|
|
|
| Стекло
|
| 1.5 - 2.0
|
|
|
|
|
| Лед
|
| 1.31
|
|
|
| Алмаз
|
| 2.42
|
|
|
|
|
Из таблицы видно, что показатель преломления стекла сильнее отличается от показателя преломления воздуха, чем показатель преломления воды. Именно поэтому луч, идущий из воздуха в стекло, преломляется сильнее, чем луч, идущий из воздуха в воду. И совсем мало преломляется луч, переходящий из воды в стекло.
Линзы
Наиболее важным применением явления преломления света на практике является использование линз. Чаще всего их делают из стекла или прозрачной пластмассы. Всякая линза, которая в средней своей части тоньше, чем по краям, в вакууме (или воздухе) будет являться рассеивающей линзой. И наоборот: всякая линза, которая в средней части толще, чем по краям, будет собирающей линзой.
Взгляните на левый чертеж. Пучок параллельных лучей, прошедший через рассеивающую линзу, становится расширяющимся, а лучи кажутся исходящими из некоторой точки F. Ее называют фокусом рассеивающей линзы. Поскольку на самом деле через эту точку лучи не проходят, то фокус рассеивающей линзы является мнимым.
Если же пучок параллельных лучей пропустить сквозь собирающую линзу, то пучок станет сходящимся. Все его лучи пройдут через некоторую точку F, являющуюся действительным фокусом. Изображения в линзах
Линзой можно не только собирать и рассеивать пучки параллельных лучей. При помощи линз легко получать увеличенные и уменьшенные изображения предметов. Например, благодаря линзе на экране получается увеличенное перевернутое изображение золотой статуэтки.
Предмет, изображение которого мы получаем, может находиться на различных расстояниях от линзы (d). В зависимости от этого изображение предмета может получиться различным. Например, если расстояние от предмета до собирающей линзы больше ее фокусного расстояния, но меньше двойного фокусного расстояния (F < d < 2F), то линза даст увеличенное, перевернутое и действительное изображение предмета (см. вторую строку таблицы).
Изображение, даваемое собирающей линзой: d < F
| увеличенное
| прямое
| мнимое
|
| F < d < 2F
| увеличенное
| перевернутое
| действительное
|
| d < 2F
| уменьшенное
| перевернутое
| действительное
| Если изображение действительное, его можно увидеть на экране. При этом изображение можно видеть из любого места в комнате, из которого только виден сам экран. Если же изображение мнимое, то на экране его получить нельзя, а можно лишь увидеть глазом.
Разложение света в спектр
Проделаем опыт. На пути луча красного света поставим стеклянную треугольную призму. При прохождении через нее луч преломится. Возьмем теперь вместо красного луча фиолетовый. Пустив его по тому же пути, заметим, что он преломляется сильнее красного.
Заменим стеклянную призму на такую же по размерам, но изготовленную из кристалла соли или кварца. Повторим опыт с лучами. Они будут отклоняться больше или меньше, но фиолетовый луч всегда будет преломляться сильнее красного.
Опыт можно повторять многократно, используя лучи и других цветов. Однако вывод из опытов будет одним: показатель преломления любого вещества зависит от цвета преломляемого луча. Это явление получило название дисперсии света.
Продолжим опыты. Направим на призму белай луч. Мы обнаружим сразу два удивительных явления: тонкий луч превратится в расширяющийся пучок и белый свет превратится в разноцветный! Поместив на его пути экран, мы получим полоску радужного цвета – сплошной спектр.
Откуда же появились разноцветные лучи? Может, призма обладает способностью окрашивать белый свет в радужные цвета? Приглядимся к рисунку повнимательнее. Красно-оранжевая часть спектра расположена там же, куда отклонился красный луч в первом опыте. А сине-фиолетовая часть спектра расположена там же, куда отклонился фиолетовый луч в этом же опыте. Следовательно, белый свет не окрашивается призмой, а разделяется ею на составные части – цветные лучи. Таким образом, белый свет – сложный свет.
Цвета тел
Пробовали ли вы когда-нибудь смотреть на мир сквозь цветные стекла? На средней фотографии вы видите две ракетки и шарик для настольного тенниса. Взглянем на эти предметы сквозь зеленое стекло (левое фото). Белый шарик стал зеленым, красная ракетка – черной, а зеленая – сохранила свой цвет. Если же мы возьмем красное стекло, то белый шарик станет красным, зеленая ракетка – черной, а красная – сохранит свой цвет (правое фото).
От чего же зависит цвет тел? Оказывается, от двух причин: а) способности различных тел неодинаково хорошо отражать лучи различного цвета и б) спектрального состава лучей, освещающих эти тела.
Первая причина проста. Если правая ракетка видится нам зеленой, значит, из всего спектра, падающего на нее белого света отражаются только желто-зелено-голубые лучи. Лучи остальных цветов ракетка не отражает, то есть поглощает.
Аналогично, красное стекло потому и красное, что поглощает все лучи, пропуская через себя лишь красно-оранжевые. Поэтому, наблюдая зеленую ракетку сквозь такое стекло, мы видим ее черной. Красно-оранжевых лучей она не испускает, а зеленые поглощаются стеклом. В результате свет от этой ракетки в наш глаз не поступает, что мы и расцениваем как черный цвет.
Вторая причина. Предположим, что ракетки освещены не белым светом (в спектре которого есть все цвета), а красным прожектором. Зеленая ракетка опять покажется нам черной. Красные лучи прожектора она поглощает, а зеленых лучей в его свете нет. В результате от зеленой ракетки не отразится никакого света. Поэтому даже без цветных стекол она будет казаться нам черной.
Оптические приборы
Лупа. Так называется двояковыпуклая линза, вставленная в оправу с ручкой. Лупу всегда располагают так, чтобы предмет отстоял от нее не дальше фокуса. Именно тогда лупа даст прямое и увеличенное изображение предмета. Лупа – самый древний оптический прибор.
Лучи, испущенные предметом и прошедшие через лупу, становятся расходящимися (рассмотрите направление хода красных или синих лучей). Поэтому лупа не может давать действительных изображений, например, на стене или экране. А мнимое изображение предмета в лупе может видеть лишь один человек, что не всегда удобно.
Проектор. Этот прибор предназначен для получения действительных увеличенных изображений предметов. То есть таких изображений, которые можно спроектировать на экран и, тем самым, сделать видимыми многим людям одновременно.
Схему проектора вы видите на чертеже. Свет лампы 1 при помощи вогнутого зеркала 2 направляется на слайд 3. Он расположен между фокусом и двойным фокусом линзы 4. В результате этого на экране 5 получается увеличенное действительное изображение слайда. Обратите внимание, что изображение слайда является перевернутым. Поэтому слайды в проектор всегда вставляют "вверх ногами".
Глаз. Орган зрения высших животных, в том числе и человека, является сложным оптическим прибором. Основные его части: 1 – склера (плотная оболочка глаза), 2 – роговица (передняя более выпуклая прозрачная часть склеры), 3 – радужная оболочка, 4 – хрусталлик, 5 – мышца, 6 – сетчатка (пронизанная нервными рецепторами внутренняя поверхность склеры), 7 – зрительный нерв.
Свет от рассматриваемого предмета, проходя в глаз, попадает на хрусталлик. Поскольку он является собирающей линзой, то на сетчатке глаза образуется изображение предмета. Светлые и темные части, из которых оно состоит, по-разному воздействуют на нервные рецепторы, пронизывающие сетчатку глаза. Эти воздействия по зрительному нерву попадают в головной мозг человека и воспринимаются им. Так протекает процесс зрения.
Одним из замечательных свойств хрусталлика является его упругость. Если окружающие его мышцы напрягаются, то хрусталлик растягивается и становится тоньше. Его преломляющая способность уменьшается, и мы можем четко видеть более удаленные предметы.
Очки. Этот оптический прибор предназначен для исправления таких дефектов зрения как дальнозоркость, близорукость и астигматизм. Рассмотрим это на примере близорукости. Такой глаз хорошо видит только близкие предметы. Их четкие изображения получаются именно на сетчатке глаза (верхний чертеж). Если же предмет удален, то его четкое изображение получается позади сетчатки, а на ней – нечеткое изображение (средний чертеж).
Поместим перед глазом рассеивающую линзу (нижний чертеж). Она сделает пучок лучей от предмета более расходящимся, чем прежде. В результате он станет похож на тот пучок, который попадал в глаз на верхнем чертеже. Следовательно, четкое изображение рассматриваемого предмета (красной точки) вновь окажется на сетчатке глаза. Таким образом очки с рассеивающими линзами помогают близоруким людям четче видеть удаленные предметы.
Интересные вопросы
|
|
|