Главная страница

Элективный курс «Подготовка учащихся к егэ по химии»



НазваниеЭлективный курс «Подготовка учащихся к егэ по химии»
страница4/5
Дата16.03.2016
Размер0.79 Mb.
ТипЭлективный курс
1   2   3   4   5
Тема №5. Окислительно-восстановительные реакции
Окислительно-восстановительными реакциями (ОВР) называют реакции, в ходе которых происходит изменение степеней окисления (с.о.) элементов, образующих реагирующие вещества.

Окислитель – вещество (элемент, в составе этого вещества), принимающее электроны. Само оно при этом восстанавливается.

Восстановитель - вещество (элемент, в составе этого вещества), отдающее электроны. 

Следует помнить, что к ОВР относятся все реакции замещения (для неорганических веществ), а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество. Ориентиром для отнесения конкретной реакции к ОВР служит наличие формулы простого вещества в схеме или уравнении химической реакции.

 Типичные окислители

 




Группа окислителей

Химические элементы

Примеры веществ

1

Электрический ток на аноде

 

 

2

Галогены в высших положительных степенях окисления

Cl+7, Br+7, I+7

HClO4, HBrO4, HIO4

3

Галогены в промежуточных положительных степенях окисления

Cl+1, Cl+3, Cl+5, Br+5, I+5…

KClO3, HClO, NaBrO3

4

Халькогены и другие неметаллы в положительных степенях окисления

S+6, S+4, N+5

H2SO4, SO2, HNO3

5

Неметаллы – простые вещества (нулевая степень окисления).

F, Cl, O, S, Br

F2, Cl2, O3, O2, S, Br2

6

Неметаллы в промежуточных отрицательных степенях окисления.

O-1, N-2

H2O2, BaO2, N2H4

7

Металлы в высших положительных степенях окисления.

Mn+7, Cr+6, Sn+4

KMnO4, K2CrO4, H2Cr2O7, SnCl4

8

Металлы в промежуточных положительных степенях окисления.

Fe+2, Cu+1, Sn+2

FeCl2, Cu2Cl2, SnSO4

9

Органические нитросоединения

N+5

CH(NO2)3,

CH2ONO2-CH2ONO2

 

Типичные восстановители





Группа восстановителей.

Химические элементы

Примеры веществ

1

Электрический ток на катоде

 

 

2

Металлы – простые вещества (нулевая степень окисления).

Na, Ca, Fe

Na, Ca, Fe

3

Неметаллы в низшей отрицательной степени окисления.

Cl-1, N-3, S-2

HCl, NH3, ZnS

4

Металлы в промежуточной положительной степени окисления.

Fe+2, Cr+2, Cu+1

FeSO4, CrCl2, Cu2Cl2

5

Неметаллы в промежуточной отрицательной степени окисления.

O-1, N-2

H2O2, N2H4

6

Неметаллы – простые вещества

S, P, C, I

S, P4, C, I2

7

Неметаллы в промежуточной положительной степени окисления.

P+3, S+4, C+2

PCl3, SO2, CO

8

Углеводороды и многие другие органические вещества

С-4, С-2 и др.

CnH2n+2, CnH2n-6,

спирты, углеводы

 

Различают три основных типа окислительно-восстановительных реакций:

1) Реакции межмолекулярного  окисления-восстановления (когда окислитель и восстановитель – разные вещества);

2) Реакции диспропорционирования (когда окислителем и восстановителем может служить одно и то же вещество);

3) Реакции внутримолекулярного окисления-восстановления (когда одна часть молекулы выступает в роли окислителя, а другая – в роли восстановителя).

Рассмотрим примеры реакций трех типов.

1. Реакциями межмолекулярного окисления-восстановления являются все уже рассмотренные нами в этом параграфе реакции.

Рассмотрим несколько более сложный случай, когда не весь окислитель может быть израсходован в реакции, поскольку часть его участвует в обычной – не окислительно-восстановительной реакции обмена:

0

 

+5

 

+2

 

+2

 

 

Cu

+

HNO3

=

Cu(NO3)2

+

NO

+

H2O

Часть частиц NO3- участвует в реакции в качестве окислителя, давая оксид азота NO, а часть ионов NO3- в неизменном виде переходит в соединение меди Cu(NO3)2. Составим электронный баланс:



Поставим найденный для меди коэффициент 3 перед Cu и Cu(NO3)2. А вот коэффициент 2 следует поставить только перед NO, потому что весь имеющийся в нем азот участвовал в окислительно-восстановительной реакции. Было бы ошибкой поставить коэффициент 2 перед HNO3, потому что это вещество включает в себя и те атомы азота, которые не участвуют в окислении-восстановлении и входят в состав продукта Cu(NO3)2 (частицы NO3- здесь иногда называют “ионом-наблюдателем”).

Остальные коэффициенты подбираются без труда по уже найденным:

3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O

2. Реакции диспропорционирования происходят тогда, когда молекулы одного и того же вещества способны окислять и восстанавливать друг друга. Это становится возможным, если вещество содержит в своем составе атомы какого-либо элемента в промежуточной степени окисления. Следовательно, степень окисления способна как понижаться, так и повышаться. Например:

+3

 

+5

 

+2

 

 

HNO2

=

HNO3

+

NO

+

H2O

Эту реакцию можно представить как реакцию между HNO2 и HNO2 как окислителем и восстановителем и применить метод электронного баланса:

+3

 

+3

 

+5

 

+2

 

 

HNO2

+

HNO2

=

HNO3

+

NO

+

H2O



Получаем уравнение:

2HNO2 + 1HNO2 = 1HNO3 + 2NO + H2O

Или, складывая вместе моли HNO2:

3HNO2 = HNO3 + 2NO + H2O

3. Реакции внутримолекулярного окисления-восстановления происходят тогда, когда в молекуле соседствуют атомы-окислители и атомы-восстановители. Рассмотрим разложение бертолетовой соли KClO3 при нагревании:

+5

 

–1

 

0

KClO3

=

KCl

+

O2

Это уравнение также подчиняется требованию электронного баланса:



Здесь возникает сложность – какой из двух найденных коэффициентов поставить перед KClO3 – ведь эта молекула содержит и окислитель и восстановитель? В таких случаях найденные коэффициенты ставятся перед продуктами:

KClO3 = 2KCl + 3O2

Теперь ясно, что перед KClO3 надо поставить коэффициент 2.

2KClO3 = 2KCl + 3O2

Внутримолекулярная реакция разложения бертолетовой соли при нагревании используется при получении кислорода в лаборатории.

Мы рассмотрели важнейшие типы окислительно-восстановительных реакций и метод электронного баланса, но пока не касались вопроса составления уравнений таких реакций. Распространенное заблуждение заключается в том, что вы можете сразу предсказать продукт (или продукты) окислительно-восстановительной реакции. Это не так. Лишь по мере накопления опыта, особенно в лаборатории, вы сможете делать все больше и больше правильных предсказаний. А пока следует научиться уравнивать реакции, реагенты и продукты которых заранее известны.


    1. Определение степени окисления в химических соединениях.


Степень окисления – это условный заряд атома в молекуле или кристалле. Его определяют, условно считая все полярные связи полностью ионнымии.
Степень окисления выражают числом частично или полностью смещенных электронов от одного атома к другому в их соединении.
Если атом отдал электроны, его степени окисления приписывается знак “+”, а если атом принял электроны, то знак “-”. Возможна и нулевая степень окисления атома в молекуле, если электроны никуда не смещались или число отданных и принятых электронов одинаково.
Степень окисления - очень важная величина, относящаяся к основным понятиям химии. Фактически, степень окисления описывает состояние атома в соединении.

Есть несколько полезных правил, которые касаются степеней окисления:

1) Степень окисления атома любого элемента в свободном состоянии равна нулю.

Это связано с тем, что в чисто ковалентных двухатомных молекулах электроны не смещены ни к одному из атомов. Если вещество находится в атомном состоянии, то степень окисления его атомов также равна нулю. Примеры молекул, где степени окисления атомов равны нулю: H2, Fe, F2, Na, O2, N2, Ar.
2) Степень окисления любого простого одноатомного иона равна его заряду. Примеры:

H+ (+1),

Fe3+ (+3),

F– (-1),

Na+ (+1).

3) Степень окисления водорода в его соединениях с другими элементами равна +1.

Примеры молекул, где водород имеет степень окисления +1: H2O, NH3, CH4, HF, HCl. Исключение составляют довольно редкие соединения - гидриды металлов (например, LiH), в которых степень окисления водорода равна -1, потому что электроотрицательность металлов меньше, чем у водорода.

4) Степень окисления кислорода равна -2 во всех соединениях, где кислород не образует простой ковалентной связи О—О.

Примеры молекул, где кислород имеет степень окисления –2 (таких соединений кислорода – подавляющее большинство): H2O, SO2, SO3, NO2. Положительную степень окисления кислород проявляет только в соединениях с фтором (например, в соединении OF2, где степень окисления кислорода равна +2).

5) Алгебраическая сумма степеней окисления всех атомов в формуле нейтрального соединения всегда равна нулю.

6) Если в ходе химической реакции степень окисления атома повышается, то говорят, что он ОКИСЛЯЕТСЯ. Если же степень окисления понижается, то говорят, что он ВОССТАНАВЛИВАЕТСЯ.



    1. Составление уравнений химических реакций методом электронного баланса


В этом методе сравнивают степени окисления атомов в исходных и конечных веществах, руководствуясь правилом: число электронов, отданных восстановителем, должно равняться числу электронов, присоединенных окислителем. Для составления уравнения надо знать формулы реагирующих веществ и продуктов реакции. Последние определяются либо опытным путем, либо на осно­ве известных свойств элементов. Рассмотрим применение этого метода на примерах.

1. Какие из указанных ниже соединений могут проявлять только окислительные свойства?

CrSO4 ; K2CrO4 ; NaCrO2 .

Решение.

Из предложенных соединений только окислительными свойствами обладает K2CrO, так как Сr в данном соединении проявляет высшую степень окисления + 6 и, следовательно, может только принимать электроны. В соединениях CrSO4 ; NaCrO2 хром проявляет промежуточные степени окисления +2 и +3 соответственно и может выполнять как функцию окислителя, так и функцию восстановителя.

Ответ: K2CrO4 .

 

2. Укажите, какие из приведенных процессов являются процессами окисления:

а) SO2  → S2– ;

б) ClO → Cl ;

в) CrO2 → CrO42– .

Решение.

Процессом окисления называется отдача атомом электронов, сопровождающаяся повышением его степени окисления. В данном случае таким процессом будет процесс : CrO2 → CrO42–. В этом превращении у хрома степень окисления меняется следующим образом:  Сr3+ – 3e- → Cr6+ , а в других случаях:

а) S4+  + 6e- → S2– ;  б) Cl+ + 2e- → Cl

Ответ: в)

 

3. Укажите, какие из реакций являются окислительно-восстановительными:

а) 2Al + Cr2O3 → Al2O3 + 2Cr ;

б) Al2(SO4)3 + 6 NaOH → 2Al(OH)3 + 3Na2SO4 ;

в) Al(OH)3 + NaOH → Na[Al(OH)4] .

Решение.

Окислительно-восстановительными называются такие реакции, в результате которых изменяется степень окисления одного или нескольких участвующих в реакции элементов.

В случае а) меняется степень окисления у двух элементов Al и Cr, в случаях б) и в) элементы, участвующие в реакциях, не меняют свою степень окисления.

Ответ: а).

 

4. Уравняйте методом электронного баланса уравнения окислительно-восстановительных реакций и укажите количество молекул окислителя:

Na2MoO4 + HCl + Al → MoCl2 + AlCl3 + NaCl + H2O

Решение.

В данном процессе степень окисления меняют два элемента: Mo и Al:

Mo6+ → Mo2+ ;   Al0 → Al3+

Записываем для этих элементов уравнения электронного баланса и подбором коэффициентов уравниваем число отданных и принятых электронов (коэффициенты записываются справа от уравнений за вертикальной чертой):



Mo6+  + 4e- → Mo2+

  3 восстановление окислителя (Na2MoO4)

Al0 – 3e- → Al3+

  4 окисление восстановителя (Al)

Из уравнений электронного баланса переносим коэффициенты в уравнение окислительно-восстановительной реакции:

3Na2MoO4 + HCl + 4Al → 3MoCl2 + 4AlCl3 + NaCl + H2O,

затем выравниваем число остальных атомов, кроме водорода и кислорода:

3Na2MoO4 + 24HCl + 4Al → 3MoCl2 + 4AlCl3 + 6NaCl + H2O,

выравниваем число атомов водорода:

3Na2MoO4 + 24HCl + 4Al → 3MoCl2 + 4AlCl3 + 6NaCl + 12H2O,

проверяем уравнение по кислороду (в левой и правой части уравнения число атомов кислорода должно быть одинаково).

Окислителем в данной реакции является Na2MoO.

Ответ: 3.
Решение заданий.

Задание 1. Составление уравнения реакции меди с раствором нитрата палладия (II). Запишем формулы исходных и конечных веществ реакции и покажем изменения степеней окисления:

Медь, образуя ион меди, отдает два электрона, ее степень окисления повы­шается от 0 до +2. Медь - восстановитель. Ион палладия, присоединяя два электрона, изменяет степень окисления от +2 до 0. Нитрат палладия (II) -окислитель. Эти изменения можно выразить электронными уравнениями
из которых следует, что при восстановителе и окислителе коэффициенты равны 1. Окончательное уравнение реакции:
Cu + Pd(NO3)2 = Cu(NO3)2 + Pd
Как видно, в суммарном уравнении реакции электроны не фигурируют.
Чтобы проверить правильность составленного уравнения, подсчитываем число атомов каждого элемента в его правой и левой частях. Например, в правой части 6 атомов кислорода, в левой также 6 атомов; палладия 1 и 1; меди тоже 1 и 1. Значит, уравнение составлено правильно.
Переписываем это уравнение в ионной форме:
Cu + Pd2+ + 2NO3- = Cu2+ + 2NO3- + Рd
И после сокращения одинаковых ионов получим
Cu + Pd2+ = Cu2+ + Pd
Задание 2. Составление уравнения реакции взаимодействия оксида марганца (IV) с концентрированной соляной кислотой (с помощью этой реакции в лабораторных условиях получают хлор).
Запишем формулы исходных и конечных веществ реакции:
НCl + МnО2 → Сl2 + MnСl2 + Н2О
Покажем изменение степеней окисления атомов до и после реакции:

Эта реакция окислительно-восстановительная, так как изменяются степени окисления атомов хлора и марганца. НCl - восстановитель, MnО2 — окисли­тель. Составляем электронные уравнения: и находим коэффициенты при восстановителе и окислителе. Они соответствен­но равны 2 и 1. Коэффициент 2 (а не 1) ставится потому, что 2 атома хлора со степенью окисления -1 отдают 2 электрона. Этот коэффициент уже стоит в электронном уравнении:
2НСl + MnO2 → Сl2 + MnСl2 + Н2О
Находим коэффициенты для других реагирующих веществ. Из электрон­ных уравнений видно, что на 2 моль HCl приходится 1 моль MnО2. Однако, учитывая, что для связывания образующегося двухзарядного иона марганца нужно еще 2 моль кислоты, перед восстановителем следует поставить коэффициент 4. Тогда воды получится 2 моль. Окончательное уравнение имеет вид
4НCl + МnО2 = Сl2 + MnСl2 + 2Н2О
Проверку правильности написания уравнения можно ограничить подсчетом числа атомов одного какого-либо элемента, например хлора: в левой части 4 и в правой 2 + 2 = 4.
Поскольку в методе электронного баланса изображаются уравнения реакций в молекулярной форме, то после составления и проверки их следует написать в ионной форме.
Перепишем составленное уравнение в ионной форме:
4Н+ + 4Сl- + МnО2 = Сl2 + Мn2+ + 2Сl- + 2Н2О
и после сокращения одинаковых ионов в обеих частях уравнения получим
4Н+ + 2Cl- + MnO2 = Сl2 + Mn2+ + 2Н2О
1   2   3   4   5