|
Программа по алгебре 7-9 по А. Г. Мордковичу Пояснительная записка Рабочая программа по алгебре 7-9 по А. Г. Мордковичу 1. Пояснительная записка
Рабочая программа по алгебре для обучающихся 7 -9 классов составлена на основе федерального государственного образовательного стандарта основного общего образования по авторской программе «Алгебра 7 – 9 классы». Авторы – составители: А.Г.Мордкович, И.И. Зубарева. М. Мнемозина 2009 г., по УМК А.Г. Мордкович с учетом примерной программы курса алгебры для 7-9 классов средней общеобразовательной школы, рекомендованной Департаментом образовательных программ и стандартов общего образования Министерства образования Российской Федерации.
Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся.
В основу настоящей программы положены педагогические и дидактические принципы (личностно ориентированные; культурно - ориентированные; деятельностно - ориентированные и т.д.) вариативного развивающего образования, и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС. Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения. Культурно - ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип. Деятельностно - ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.
Программа задает перечень вопросов, которые подлежат обязательному изучению в основной школе. Она так же является логическим продолжением курса математики начальной школы (принцип преемственности). В основе курса лежит авторская идея А.Г.Мордковича; программа позволяет обеспечивать формирование как предметных умений, так и универсальных учебных действий школьников;
программа позволяет обеспечивать достижение целей в направлении личностного развития, в метапредметном направлении и предметном направлении. Обучение математике в основной школе направлено на достижение следующих целей:
в направлении личностного развития:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей;
в метапредметном направлении:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
в предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Целью изучения курса алгебры в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.
В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.
Предлагаемый курс позволяет обеспечить формирование, как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач. 2. Общая характеристика учебного предмета
Настоящая программа основного общего образования по математике составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам общего образования, представленных в федеральном государственном образовательном стандарте общего образования, с учетом преемственности с Примерными программами для начального общего образования. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.
Содержание математического образования применительно к основной школе представлено в виде следующих содержательных разделов. Это арифметика; алгебра; функции; вероятность и статистика; геометрия. Наряду с этим в содержание основного общего образования включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.
Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.
Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.
Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.
Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.
Данная программа по математике для основной школы является логическим продолжением программы для начальной школы и вместе с ней составляет описание непрерывного курса математики с 1-го по 9-й класс общеобразовательной школы. 3.Место предмета в учебном плане. Базисный учебный (образовательный) план на изучение алгебры в 7—9 классах основной школы отводит 3 часа в неделю в течение каждого года обучения, всего 306 уроков.
Распределение учебного времени между этими предметами представлено в таблице.
Классы
| Предметы математического цикла
| Количество часов на ступени основного образования
| 5-6
| Математика
| 340 (170*2 года)
| 7-9
| Математика (Алгебра)
| 306 (102*3 года)
| Математика (Геометрия)
| 204 (68*3 года)
| Всего
| 850
|
4. Личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»
Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих результатов:
в направлении личностного развития:
Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
Развитие интереса к математическому творчеству и математических способностей;
Умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
Критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
Представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
Креативность мышления, инициатива, находчивость, активность при решении математических задач;
Умение контролировать процесс и результат учебной математической деятельности;
Способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
2)в метапредметном направлении:
Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
Умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
в предметном направлении:
Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности;
Овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
Умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
Развитие представлений о числе, натуральных чисел, овладение навыками устных, письменных, инструментальных вычислений;
Овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
Усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
Умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
Умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
Умение проводить классификации, логические обоснования, доказательства математических утверждений;
Умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;
Овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
Овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;
Овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений.
Взаимосвязь результатов освоения предмета «Математика» можно системно представить в виде схемы. При этом обозначение ЛР указывает, что продвижение учащихся к новым образовательным результатам происходит в соответствии с линиями развития средствами предмета. Предметные результаты (цели предмета)
5-я ЛР – Независимость и
критичность мышления
6-я ЛР – Воля и
настойчивость
в достижении цели
3-я ЛР – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами
4-я ЛР – Совокупность умений по использованию доказательной математической речи
1-я ЛР – Использование математических знаний и умений для решения различных математических задач и оценки полученных результатов.
2-я ЛР – Умения использовать математические средства для изучения и описания реальных процессов и явлений
Образовательные технологии и формы работы
Метапредметные результаты Регулятивные. Коммуникативные. Познавательные
Функциональная грамотность
- Технология проблемного диалога (структура параграфов)
- Технология оценивания (правило самооценивания) - Технология продуктивного чтения (задания по работе с текстом)
- Групповая форма работы (задания для групповой работы) Личностные результаты
Комплексные задания и компетентностные задачи в УМК:
- Проектные задания на предметном материале
- Жизненные (компетентностные) задачи на предметном и межпредметном материале 7–9 классы
Личностными результатами изучения предмета «Математика» являются следующие качества:
независимость и критичность мышления;
воля и настойчивость в достижении цели.
Средством достижения этих результатов является:
система заданий учебников;
представленная в учебниках в явном виде организация материала по принципу минимакса;
использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.
Метапредметными результатами изучения курса «Математика» являются первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
|
|
|